Teseo
Colaborador
Bueno acá les dejo esta joya sobre la historia del mejor sistema de defensa aérea jamás producida en la Unión Soviética, el S-300 SA-10 Grumble/Sa-20 Gargoyle y sus derivados.
Está en ingles, prometo otro día ponerlo todo en castellano!.
[size=14pt]Moscow's Air Defense's, Part III: Closing the Ring
[/size]
by Michal Fiszer
Mar. 31, 2006
edefenseonline.com
In the late '70s and early '80s, Soviet commanders became very concerned about the new generation of US cruise missiles, especially the AGM-86 Air Launched Cruise Missile (ALCM), Tomahawk ground-launched cruise missile (GLCM), and naval BGM-109 Tomahawk. Those missiles flew at very low altitude and had very small radar cross-sections. They were difficult to detect and track, and the older air-defense systems could not engage them effectively. This vulnerability was especially the case with the S-25 Berkut air-defense system deployed around Moscow, which could not be modernized to the point where it could be made effective against the new-generation cruise missiles. It had to be replaced by a new system, and the only one considered up to the task was the S-300P series already deployed in some other places in the Soviet Union.
The Soviet Union's decision replace the extensive -- and expensive -- air-defense system for Moscow based on the S-25 Berkut with a new one was not easily arrived at. The Air Defense Forces, Army, and Navy all wanted new air-defense systems, and Soviet authorities decided that a solution would be a common "tri-service" missile: the S-300. Shown here is the S-300P system, developed for the Air Defense Forces.
Photo by Michal Fiszer
Initially, the S-300P was used to protect those vital objects that were most exposed to attack by low-flying bombers on the outskirts of the Soviet Union. The first S-300PT was deployed in the Severodvinsk area, far north, considered to be the first target that would be attacked by incoming ALCMs launched from B-52 bombers. Severodvinsk has been one of the most important bases for Soviet (now Russian) strategic ballistic-missile submarines, and a big shipyard was located there, so it had to be protected effectively. There were other vital objects close to the Soviet Union's frontier areas, especially on those directions from which NATO air raids were mostly expected.
Moscow, the most important area in the whole Soviet Union (and Russia), was left with an obsolete air-defense system that was unable to deal with the new threats. An incredible amount of money had been spent on the S-25 system, and it was not easy to explain to the Politburo that this costly system had now become ineffective. Even dismounting it would cost a lot of money, so the decision to replace the extensive – and expensive – air-defense system for Moscow based on the S-25 Berkut with a new one was not easily arrived at. However, just such a decision was made in 1980, after a 1978 recommendation from the 2nd TsNII, the research and development center responsible for studying the progress in air and air-defense forces.
The Soviet Council of Ministers instructed the Moskovkiy NII Pribornoy Avtomatiki (Moscow Research and Development Institute of Automatics and Instrumentations, presently NTTs "Proton") to develop an adequate command system for the S-300P surface-to-air missile units. The result was the 73N6 Baikal: a fully mobile system mounted on the same MAZ-543M chassis as the S-300PS transporter-erector-launcher and radar (TELAR) vehicle itself. The system consisted of a 49L6 mobile command post, along with 52L6 communications systems for linking S-200 and 53L6 systems to S-300 systems. Up to 12 units can be attached to each Baikal system, which can be fed with information on about 80 tracked targets. The system is produced by the MZ "Proton" factory in Perm.
The Baikal, presently used in Russia at the air-defense corps level, integrates with the 5S99M Senezh mobile regimental command system. The latter system was developed by OKB "Peleng" in Yekaterinburg and is produced by NPO "Vektor," also in Yekaterinburg. The Senezh can collect information from the Baikal and convey it down to the surface-to-air-missile (SAM) battalions. The Baikal information is combined with information from the radio-technical (radar) brigade's command-and-control system and from a signals-intelligence (SIGINT) battalion's command-and-control system to create a unified air picture for the SAM battalions.
Tests of the Baikal system were conducted through the end of 1984, and it was decided to deploy it operationally along with the S-300P system. The deployment of S-300PT battalions around Moscow began with the external ring in 1985. Simultaneously, the S-25 positions were dismounted, and the associated equipment was taken out. There is no commonality of equipment between the two systems. Some S-300PT positions were simply built in new places, and the old S-25 positions were abandoned altogether. Typically, one S-300PT battalion was deployed in place of one S-25 regiment. Most S-300P regiments have three battalions (though some only have two), so about 20 regiments would be required to complete the ring. Through 1988, however, only eight S-300PT and S-300PS regiments had been deployed, whereas all of the S-25 units had been removed from the external ring in by 1987. The modernization of the internal ring was much delayed, and six regiments of new S-300PM systems were deployed from 1989 to 1994 (the last S-25s were removed in late 1993). So only 14 regiments were deployed in total, and that is the situation as it exists today.
An S-300P batter position deployed. Soviet authorities, concerned that developing NATO weapons and tactics – particularly wave attacks by low-flying cruise missiles – had rendered obsolete Moscow's air-defense system based on the S-25, embarked on the complex S-300P program.
Photo by Miroslav Gyurosi
Currently, the 14 regiments comprising Moscow's air-defense network are organized under the 1st Air Defense Corps. The known locations of the component regiments are as follows: in the Southwest Sector, 124th Air Defense Missile Regiment (ADMR) is at Odintsovo, and the 93rd ADMR is at Zvenigorod; in the Northwest Sector, the 210th ADMR is at Morozki, and another ADMR is at Dolgoprudnyi; in the Northeast Sector, the 631st ADMR is at Marino, the 502nd ADMR is at Fryazevo, and other ADMRs are at Kablukovo and Chernoye; and in the Southeast Sector, the 713th ADMR is at Zakharove, the 390th ADMR is at Novoyean, the 549th ADMR is at Stupino, and another ADMR is at Serpukhov. The remaining four regiments belong to the 32nd Air Defense Corps, headquartered at Rzhev, and its only known unit is the 145th ADMR at Voronezh.
The integrated air-defense network has undergone further changes, and Russia is now beginning to field the S-400 system in place of S-300PM/S-300PM1
[size=10pt]The Common Tri-Service Missile[/size]
In the late 1960s, the highest authorities in the Soviet Union (read: the Politburo of the Communist Party) were concerned about the growing costs of armaments-development programs. At that time, the Soviet Union undertook tremendous efforts to field a broad range of new weapons types, including new air-defense systems, such as the S-200 Angara (SA-5), 2K11 Krug (SA-4), 2K12 Kub (SA-6), ZSU-23-4 Shilka, and the 9M32 Strela-2 (SA-7). Simultaneously, there were efforts to improve deployed systems, such as the SA-75 Dvina (SA-2), S-75 Desna, S-75M Volkhov, and the S-125/S-125M Neva (SA-3), which were then in mass production. Moreover, the Country Air Defense Forces (Voiska Protivovozdushnoi Oborony Strany, or PVO-Strany) issued a requirement for a new air-defense system that would replace the two existing transportable systems it fielded: the S-75 and S-125. Both of these were so-called "single-channel" systems that could engage only one target at a time. The single-engagement capability was the price for being transportable, as opposed to fixed or semi-fixed systems, such as the S-25 (SA-1) and S-200 (SA-5), respectively. The new system PVO-Strany wanted was to be transportable and was to have the ability to engage multiple targets. The transportability was to enable a change of fire positions, which would increase the system's survivability and combat effectiveness by countering an enemy's efforts to develop a carefully scripted suppression attack against them.
In addition, the Soviet Army also desired a new system. The Army wanted a medium- to long-range system with the ability to engage multiple targets that, by necessity, would also be mobile. And the Soviet Navy also expressed some interest in such a system. Considering all of these requests, the Soviet Council of Ministers decided that fulfilling them would be a duplication of efforts, and in December 1966, it directed the Voyenno-Promyslenny Komplex (VPK, the military-industrial complex) to organize the development of a single medium- to long-range mobile air-defense system with the ability to engage multiple targets that would be common for three services: the Air Defense Forces (PVO-Strany, coded "P"), the Soviet Army (Sukhoputnoye Voiska, coded "S"), and the Soviet Navy (Flot, coded "F").
The decision immediately sparked heated discussions among specialists from the military forces, industry, the Ministry of Defense, and the Politburo. Most of the military and industry authorities strongly opposed a "joint" program. Only the Navy did not object vigorously, since it usually got versions of land systems anyway (there was only one pure naval air-defense missile system ever developed in the Soviet Union: the M-11 Shtorm, or SA-N-3). The Army, however, was strongly against the idea. Army officers believed that a system developed for the Country Air Defense would first meet PVO-Strany's requirements, leaving the mobile forces with a cumbersome, heavy, and complicated system. PVO-Strany was usually more powerful in the Soviet military hierarchy, and the Soviet Army was definitely sensitive about combining development efforts with this service.
One of the radars usually attached to the S-300PT battalion's command post was initially the 5N66M (NATO: Clam Shell) radar for the detection of low-flying targets. It had a vertical parabolic antenna, similar to the antennas of altitude-finder radars, and was placed on a special 24.4-m 40V6 mast, as seen here.
Almaz
Army officers knew that they would not be able to change a decision that originated from the highest Communist Party authorities, so they started to sabotage the program in an effort to make it appear that separate systems were needed. (Their posture was somewhat similar to the US Navy when it was forced to acquire the F-111B aircraft, a version of the US Air Force's F-111A fighter-bomber.) The Soviet Army wrote its requirements in such a way that PVO-Strany would not accept them. One of the primary features of the Army system was the ability to engage short- and medium-range ballistic missiles. The Army stated that it was absolutely essential to provide the land forces with effective protection against US Pershing 1A missiles with a range of 740 km. This requirement was set by Gen. Col. Pavel N. Kuleshov, then chief of Glavnoye Raketno-Artileriyske Upravleniye (GRAU, Main Missile-Artillery Directorate). Although desiring an anti-ballistic-missile (ABM) capability was rational, the firm statement that an ABM capability against medium-range missiles was absolutely essential immediately created a technological challenge. At the same time, it was clear that PVO-Strany would not demand any ABM capability, since its systems protected objects located well beyond the range of theater ballistic missile (TBMs), and a strategic ABM capability was provided by a dedicated system deployed only around Moscow. (The Moscow ABM system, A-35 and A-135, requires a separate description and lies outside the scope of this article.) The other important requirement the Army laid down was the need for a lightly armored, tracked chassis. Again, it was obvious that tracked vehicles and light armor would be luxuries for PVO-Strany and that it would not want to pay for them.
Both services, however, agreed that the range of the air-defense system be at least 50-60 km (not less than the S-75M Volkhov or 2K11 Krug), that it have the ability to engage targets at altitudes from 25 to 25,000 m, that it have the capability to engage at least six targets at a time (to account for a four-ship formation in a single engagement sequence at a kill probability of 0.75), and that the system also be able to engage small unmanned aerial vehicles (UAVs) and cruise missiles flying at extremely low altitude at high-subsonic speed. The Army also wanted the capability to engage hovering helicopters, but there was a willingness to be flexible on this point. As it was expected, PVO-Strany wanted to downgrade the Army version: no ABM capability, no armor, and a wheeled chassis (no cross-country mobility required).
A man who well understood the whole game was Marshal Dmitri F. Ustinov, then secretary of the Central Committee of the Communist Party and later (1976) minister of defense of the Soviet Union. Ustinov was a former national commissar for armament (1946-1953), minister of armament (1953-1957), and minister of defense industry (1957-1963) – it was all the same office, just the title changed – and since 1963, he had been responsible for supervising of the military-industrial complex. The marshal directed KB-1 of the Ministry of Radio Industry (on March 24, 1966, the organization reformed into MKB "Strela," presently known as NPO "Alamaz," a part of the Almaz-Antey consortium) to undertake the conceptual development of a unified system. Simultaneously, he instructed NII-20 (reorganized in 1967 into Nauchno-Isledovatelski Electro-Mekhanicheski Institute, NIEMI) Research-Development Electro-Mechanical Institute) located in Kuntsevo, near Moscow, to undertake preliminary design of a complex air-defense and ABM system, unofficially dubbed the S-500U ("U" for universalny, meaning "universal" or "multirole").
In May 1969, the Central Committee of the Communist Party and the Council of Ministers, during a joint session, issued a decision regarding the development of a unified S-300 system. The document directed that a unified system, adapted to the needs of the three services, was to be developed cooperatively by the following organizations: MKB "Strela" would develop the S-300P version for PVO-Strany; VNII RE MSP would develop the S-300F version for the Navy; and NIEMI would develop the S-300V version for the Army. This decision was meaningful. Theoretically, it demanded that all three versions be unified, but at the same time, separate organizations were responsible for their development, so the commonality was doubtful at best. Only Ustinov and the industry representatives really knew what was going on. Soviet authorities thought that a joint system would be developed. They were wrong.
[size=10pt]The S-300P[/size]
.
Está en ingles, prometo otro día ponerlo todo en castellano!.
[size=14pt]Moscow's Air Defense's, Part III: Closing the Ring
[/size]
by Michal Fiszer
Mar. 31, 2006
edefenseonline.com
In the late '70s and early '80s, Soviet commanders became very concerned about the new generation of US cruise missiles, especially the AGM-86 Air Launched Cruise Missile (ALCM), Tomahawk ground-launched cruise missile (GLCM), and naval BGM-109 Tomahawk. Those missiles flew at very low altitude and had very small radar cross-sections. They were difficult to detect and track, and the older air-defense systems could not engage them effectively. This vulnerability was especially the case with the S-25 Berkut air-defense system deployed around Moscow, which could not be modernized to the point where it could be made effective against the new-generation cruise missiles. It had to be replaced by a new system, and the only one considered up to the task was the S-300P series already deployed in some other places in the Soviet Union.
The Soviet Union's decision replace the extensive -- and expensive -- air-defense system for Moscow based on the S-25 Berkut with a new one was not easily arrived at. The Air Defense Forces, Army, and Navy all wanted new air-defense systems, and Soviet authorities decided that a solution would be a common "tri-service" missile: the S-300. Shown here is the S-300P system, developed for the Air Defense Forces.
Photo by Michal Fiszer
Initially, the S-300P was used to protect those vital objects that were most exposed to attack by low-flying bombers on the outskirts of the Soviet Union. The first S-300PT was deployed in the Severodvinsk area, far north, considered to be the first target that would be attacked by incoming ALCMs launched from B-52 bombers. Severodvinsk has been one of the most important bases for Soviet (now Russian) strategic ballistic-missile submarines, and a big shipyard was located there, so it had to be protected effectively. There were other vital objects close to the Soviet Union's frontier areas, especially on those directions from which NATO air raids were mostly expected.
Moscow, the most important area in the whole Soviet Union (and Russia), was left with an obsolete air-defense system that was unable to deal with the new threats. An incredible amount of money had been spent on the S-25 system, and it was not easy to explain to the Politburo that this costly system had now become ineffective. Even dismounting it would cost a lot of money, so the decision to replace the extensive – and expensive – air-defense system for Moscow based on the S-25 Berkut with a new one was not easily arrived at. However, just such a decision was made in 1980, after a 1978 recommendation from the 2nd TsNII, the research and development center responsible for studying the progress in air and air-defense forces.
The Soviet Council of Ministers instructed the Moskovkiy NII Pribornoy Avtomatiki (Moscow Research and Development Institute of Automatics and Instrumentations, presently NTTs "Proton") to develop an adequate command system for the S-300P surface-to-air missile units. The result was the 73N6 Baikal: a fully mobile system mounted on the same MAZ-543M chassis as the S-300PS transporter-erector-launcher and radar (TELAR) vehicle itself. The system consisted of a 49L6 mobile command post, along with 52L6 communications systems for linking S-200 and 53L6 systems to S-300 systems. Up to 12 units can be attached to each Baikal system, which can be fed with information on about 80 tracked targets. The system is produced by the MZ "Proton" factory in Perm.
The Baikal, presently used in Russia at the air-defense corps level, integrates with the 5S99M Senezh mobile regimental command system. The latter system was developed by OKB "Peleng" in Yekaterinburg and is produced by NPO "Vektor," also in Yekaterinburg. The Senezh can collect information from the Baikal and convey it down to the surface-to-air-missile (SAM) battalions. The Baikal information is combined with information from the radio-technical (radar) brigade's command-and-control system and from a signals-intelligence (SIGINT) battalion's command-and-control system to create a unified air picture for the SAM battalions.
Tests of the Baikal system were conducted through the end of 1984, and it was decided to deploy it operationally along with the S-300P system. The deployment of S-300PT battalions around Moscow began with the external ring in 1985. Simultaneously, the S-25 positions were dismounted, and the associated equipment was taken out. There is no commonality of equipment between the two systems. Some S-300PT positions were simply built in new places, and the old S-25 positions were abandoned altogether. Typically, one S-300PT battalion was deployed in place of one S-25 regiment. Most S-300P regiments have three battalions (though some only have two), so about 20 regiments would be required to complete the ring. Through 1988, however, only eight S-300PT and S-300PS regiments had been deployed, whereas all of the S-25 units had been removed from the external ring in by 1987. The modernization of the internal ring was much delayed, and six regiments of new S-300PM systems were deployed from 1989 to 1994 (the last S-25s were removed in late 1993). So only 14 regiments were deployed in total, and that is the situation as it exists today.
An S-300P batter position deployed. Soviet authorities, concerned that developing NATO weapons and tactics – particularly wave attacks by low-flying cruise missiles – had rendered obsolete Moscow's air-defense system based on the S-25, embarked on the complex S-300P program.
Photo by Miroslav Gyurosi
Currently, the 14 regiments comprising Moscow's air-defense network are organized under the 1st Air Defense Corps. The known locations of the component regiments are as follows: in the Southwest Sector, 124th Air Defense Missile Regiment (ADMR) is at Odintsovo, and the 93rd ADMR is at Zvenigorod; in the Northwest Sector, the 210th ADMR is at Morozki, and another ADMR is at Dolgoprudnyi; in the Northeast Sector, the 631st ADMR is at Marino, the 502nd ADMR is at Fryazevo, and other ADMRs are at Kablukovo and Chernoye; and in the Southeast Sector, the 713th ADMR is at Zakharove, the 390th ADMR is at Novoyean, the 549th ADMR is at Stupino, and another ADMR is at Serpukhov. The remaining four regiments belong to the 32nd Air Defense Corps, headquartered at Rzhev, and its only known unit is the 145th ADMR at Voronezh.
The integrated air-defense network has undergone further changes, and Russia is now beginning to field the S-400 system in place of S-300PM/S-300PM1
[size=10pt]The Common Tri-Service Missile[/size]
In the late 1960s, the highest authorities in the Soviet Union (read: the Politburo of the Communist Party) were concerned about the growing costs of armaments-development programs. At that time, the Soviet Union undertook tremendous efforts to field a broad range of new weapons types, including new air-defense systems, such as the S-200 Angara (SA-5), 2K11 Krug (SA-4), 2K12 Kub (SA-6), ZSU-23-4 Shilka, and the 9M32 Strela-2 (SA-7). Simultaneously, there were efforts to improve deployed systems, such as the SA-75 Dvina (SA-2), S-75 Desna, S-75M Volkhov, and the S-125/S-125M Neva (SA-3), which were then in mass production. Moreover, the Country Air Defense Forces (Voiska Protivovozdushnoi Oborony Strany, or PVO-Strany) issued a requirement for a new air-defense system that would replace the two existing transportable systems it fielded: the S-75 and S-125. Both of these were so-called "single-channel" systems that could engage only one target at a time. The single-engagement capability was the price for being transportable, as opposed to fixed or semi-fixed systems, such as the S-25 (SA-1) and S-200 (SA-5), respectively. The new system PVO-Strany wanted was to be transportable and was to have the ability to engage multiple targets. The transportability was to enable a change of fire positions, which would increase the system's survivability and combat effectiveness by countering an enemy's efforts to develop a carefully scripted suppression attack against them.
In addition, the Soviet Army also desired a new system. The Army wanted a medium- to long-range system with the ability to engage multiple targets that, by necessity, would also be mobile. And the Soviet Navy also expressed some interest in such a system. Considering all of these requests, the Soviet Council of Ministers decided that fulfilling them would be a duplication of efforts, and in December 1966, it directed the Voyenno-Promyslenny Komplex (VPK, the military-industrial complex) to organize the development of a single medium- to long-range mobile air-defense system with the ability to engage multiple targets that would be common for three services: the Air Defense Forces (PVO-Strany, coded "P"), the Soviet Army (Sukhoputnoye Voiska, coded "S"), and the Soviet Navy (Flot, coded "F").
The decision immediately sparked heated discussions among specialists from the military forces, industry, the Ministry of Defense, and the Politburo. Most of the military and industry authorities strongly opposed a "joint" program. Only the Navy did not object vigorously, since it usually got versions of land systems anyway (there was only one pure naval air-defense missile system ever developed in the Soviet Union: the M-11 Shtorm, or SA-N-3). The Army, however, was strongly against the idea. Army officers believed that a system developed for the Country Air Defense would first meet PVO-Strany's requirements, leaving the mobile forces with a cumbersome, heavy, and complicated system. PVO-Strany was usually more powerful in the Soviet military hierarchy, and the Soviet Army was definitely sensitive about combining development efforts with this service.
One of the radars usually attached to the S-300PT battalion's command post was initially the 5N66M (NATO: Clam Shell) radar for the detection of low-flying targets. It had a vertical parabolic antenna, similar to the antennas of altitude-finder radars, and was placed on a special 24.4-m 40V6 mast, as seen here.
Almaz
Army officers knew that they would not be able to change a decision that originated from the highest Communist Party authorities, so they started to sabotage the program in an effort to make it appear that separate systems were needed. (Their posture was somewhat similar to the US Navy when it was forced to acquire the F-111B aircraft, a version of the US Air Force's F-111A fighter-bomber.) The Soviet Army wrote its requirements in such a way that PVO-Strany would not accept them. One of the primary features of the Army system was the ability to engage short- and medium-range ballistic missiles. The Army stated that it was absolutely essential to provide the land forces with effective protection against US Pershing 1A missiles with a range of 740 km. This requirement was set by Gen. Col. Pavel N. Kuleshov, then chief of Glavnoye Raketno-Artileriyske Upravleniye (GRAU, Main Missile-Artillery Directorate). Although desiring an anti-ballistic-missile (ABM) capability was rational, the firm statement that an ABM capability against medium-range missiles was absolutely essential immediately created a technological challenge. At the same time, it was clear that PVO-Strany would not demand any ABM capability, since its systems protected objects located well beyond the range of theater ballistic missile (TBMs), and a strategic ABM capability was provided by a dedicated system deployed only around Moscow. (The Moscow ABM system, A-35 and A-135, requires a separate description and lies outside the scope of this article.) The other important requirement the Army laid down was the need for a lightly armored, tracked chassis. Again, it was obvious that tracked vehicles and light armor would be luxuries for PVO-Strany and that it would not want to pay for them.
Both services, however, agreed that the range of the air-defense system be at least 50-60 km (not less than the S-75M Volkhov or 2K11 Krug), that it have the ability to engage targets at altitudes from 25 to 25,000 m, that it have the capability to engage at least six targets at a time (to account for a four-ship formation in a single engagement sequence at a kill probability of 0.75), and that the system also be able to engage small unmanned aerial vehicles (UAVs) and cruise missiles flying at extremely low altitude at high-subsonic speed. The Army also wanted the capability to engage hovering helicopters, but there was a willingness to be flexible on this point. As it was expected, PVO-Strany wanted to downgrade the Army version: no ABM capability, no armor, and a wheeled chassis (no cross-country mobility required).
A man who well understood the whole game was Marshal Dmitri F. Ustinov, then secretary of the Central Committee of the Communist Party and later (1976) minister of defense of the Soviet Union. Ustinov was a former national commissar for armament (1946-1953), minister of armament (1953-1957), and minister of defense industry (1957-1963) – it was all the same office, just the title changed – and since 1963, he had been responsible for supervising of the military-industrial complex. The marshal directed KB-1 of the Ministry of Radio Industry (on March 24, 1966, the organization reformed into MKB "Strela," presently known as NPO "Alamaz," a part of the Almaz-Antey consortium) to undertake the conceptual development of a unified system. Simultaneously, he instructed NII-20 (reorganized in 1967 into Nauchno-Isledovatelski Electro-Mekhanicheski Institute, NIEMI) Research-Development Electro-Mechanical Institute) located in Kuntsevo, near Moscow, to undertake preliminary design of a complex air-defense and ABM system, unofficially dubbed the S-500U ("U" for universalny, meaning "universal" or "multirole").
In May 1969, the Central Committee of the Communist Party and the Council of Ministers, during a joint session, issued a decision regarding the development of a unified S-300 system. The document directed that a unified system, adapted to the needs of the three services, was to be developed cooperatively by the following organizations: MKB "Strela" would develop the S-300P version for PVO-Strany; VNII RE MSP would develop the S-300F version for the Navy; and NIEMI would develop the S-300V version for the Army. This decision was meaningful. Theoretically, it demanded that all three versions be unified, but at the same time, separate organizations were responsible for their development, so the commonality was doubtful at best. Only Ustinov and the industry representatives really knew what was going on. Soviet authorities thought that a joint system would be developed. They were wrong.
[size=10pt]The S-300P[/size]
.