AKABARI, S.; MENHAJ, M. B.; NIKRAVESH, S. K. Fuzzy modeling of offensive
maneuvers in an air-to-air combat. In: REUSCH, B. (Ed.). Advances in soft
computing: computational intelligence, theory and applications. Heidelberg:
Springer, 2005. p. 171-184.
[2] BUSS, A. H.; SANCHEZ, P. J. Simple movement and detection in discrete event
simulation. In: WINTER SIMULATION CONFERENCE, 2005, Orlando.
Proceedings... Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2005.
p. 992-1000.
[3] BUSS, A. Simkit. Monterey: Naval Postgraduate School, 2010. Available in:
<
http://diana.nps.edu/Simkit/>. Acesso em: 09/09/2011.
[4] DAVIDOVITZ, A.; SHINAR, J. Two-target game model of an air combat with fireand-forget all-aspect missiles. Journal of Optimization Theory and Applications, v.
63, n. 2, p. 133-165, 1989.
[5] DEMKIN, M. A.; TISHCHENKO, Y. E.; FEDUNOV, B. E. Basic onboard real-time
advisory system for a duel situation of distant air fight. Journal of Computer and
Systems Sciences International, v. 47, n. 4, p. 552-569, 2008.
[6] FU, M. C.; CHEN, C.-H.; SHI, L. Some topics for simulation optimization. In:
WINTER SIMULATION CONFERENCE, 2008, Miami. Proceedings… Piscataway,
NJ: Institute of Electrical and Electronics Engineers, 2008. p. 27-38
[7] HEINZE, C.; SMITH, B.; CROSS, M. Thinking quickly: agents for modeling air
warfare. In: ANTONIOU, G.; SLANEY, J. (Ed.). Advanced topics in artificial
intelligence. Berlin: Springer, 1998. p. 47-58.
[8] KARELAHTI, J., K. VIRTANEN, T. RAIVIO. Game Optimal Support Time of a
Medium Range Air-to-Air Missile. Journal of Guidance, Control, and Dynamics, v.
29, n. 5, p. 1061–1069, 2006.
[9] KARELAHTI, J.; VIRTANEN, K.; RAIVIO, T. Near optimal missile avoidance
trajectories via receding horizon control. Journal of Guidance, Control, and
Dynamics, v. 30, n. 5, p. 1287-1298, 2007.
[10] LAW, A. M.; KELTON, W. D. Simulation modeling and analysis. 3rd ed. Fairfield:
McGraw-Hill, 2000.
[11] LIN, Z. et al. Sequential maneuvering decisions based on multi-stage influence diagram
in air combat. Journal of Systems Engineering and Electronics, v. 18, n. 3, p. 551-
555, 2007.
[12] MUKAI, H. et al. Sequential linear-quadratic method for differential games with air
combat applications. Computational Optimization and Applications, v. 25, p. 193-
222, 2003.
[13] POROPUDAS, J.; VIRTANEN, K. Analyzing air combat simulation results with
dynamic Bayesian networks. In: WINTER SIMULATION CONFERENCE, 2007,
Washington. Proceedings... Piscataway, NJ: Institute of Electrical and Electronics
Engineers, 2007. p. 1370-1377.
[14] TRAN, C.; ABRAHAM, A.; JAIN, L. Adaptation of a Mamdani fuzzy inference system
using neuro-genetic approach for tactical air combat decision support system. In:
MCKAY, R.; SLANEY, J. (Ed.). AI 2002: advances in artificial intelligence. Berlin:
Springer, 2002. p. 672-680.
[15] VIEIRA JUNIOR, H.; KIENITZ, K. H.; BELDERRAIN, M. C. N. Discrete-valued,
stochastic-constrained simulation optimization with COMPASS. In: WINTER
SIMULATION CONFERENCE, 2011, Phoenix. Proceedings... Piscataway, NJ:
Institute of Electrical and Electronics Engineers, 2011. p. 4196-4205.
[16] VIRTANEN, K.; KARELAHTI, J.; RAIVIO, T. Modeling air combat by a moving
horizon influence diagram game. Journal of Guidance, Control, and Dynamics, v. 29,
n. 5, p. 1080-1091, 2006.